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resulting in proprty damage and/or injuries and fatalities. However, the ¢ecaoidendis also
used when referring tegacy items (e.g., US DOT Accident Prediction Modeljvhen

referencing or quoting published literature
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Abstract

The research objectives this piojectwere to update Nebraska Department of
Transportation (NDOT) 1999 Nebraska Accident Prediction Model for HigiRalyGrade
Crossings (HRGCs) and to develop guidelines using Lancaster County Nebraska HRGCs for
improving safety at urban gated HRGCstthie not designategliietzones but are ithevicinity
of quietzone crossings.

FRA crash and HRGC inventory data were utilized for estimation of the new model after
inventory information on 742 HRGCs was updated. HRGC crashes forZ20@3period were
used for model estimation while 2019 HRGC crashes were used for model prediction validation.
After consideration of several different model formulations, a Poisson regression model with
scaled parameters was selected as the 2020 Nebraska HRGC CrasloRiddde!.

Lancaster County HRGCs consistency assessment was performed using Federal Railroad
Admi ni st r at ietZané €alc(ldtoRta analyQaugated runetzone HRGCs that are
in proximity of designateduietzone HRGCs. The general guidanceachieving a more
consistent driving experience at such HRGCs is to consider the use of Supplemental Safety
Measures including the use of mountable medians with reflective traffic channelization devices
(vertical panels or tubular delineators) or fimavessable curb medians with or without
channelization devices at nopietzone gated HRGCs that are in proximity of establisheadt
zones. A complete update of the statewide HRGC inventory is recommended to remove errors

and missing values from the existidgtabase.
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Chapter lintroduction

1.1 Background

Highway-rail crossings are junctions between the rail and the highway network wiee
two meet. Mre than 97% of these crossings are at the same lexgh@) in the USsuch
crossings are commonly referred tohaghwayrail grade crossings (HRGCs). While trains have
the rightof-way at HRGCs every year there are a number of reported crashes when motor
vehicles and other highway users fail to yield the rigfhtvayto trains Motor-vehicle involved
crashes at fgoad crossings are invariably more severe compared to crashes on the rest of the
surface transportation network mainly due to train involvement. In 2019, the number of crashes
reported in the US at HRGCs was 2,220 resulting in 294 fatalities; fataésrasine 13.24% of
total reported incident$ederaRailroad Administration 2020Puring the same year, Nebraska
accounted for 29 crashes at HRGCs involving 6 fatalities and t8tadnnjuries; fatal crashes
were 17.24% of total reported crashes.

Rail crossing safety models based on reported crash datpiwaded arunderstanding
of crash phenomenon BRGGCs, identifying associated factors in an attempt to improve safety
and for ranking competing rail crossings for safetprovementesourceallocdions. The
Nebraska Department ofdnsportation (NDOT) currently utilizése 1999Nebraska Accident
Prediction Mode(HNTB, 1999)for rail crossings to identify and rank crossings that may need
scrutiny and perhaps subsequent safety improvements. Degddgihe Midwest Research
Institute (under contract to HNTB Corp.) in 1999, this crash prediction model was based on 5
year rail crossingrashe and inventory data from September 1993 through August 1998. It
updated the previously used 1978k¥askaDepatment of Roads (NDR) Hazard Indexwhich

wasa modified version of the NCHRP Report 50 Form(iN&HRPReport 50 1968).The



model ovefpredicts (about 10%), and results may not be optimal as many changes have occurred

in terms of train and motor vehideaffic, crash trends, and rail crossing inventory information

since its adoptionOther state DOTBave recently updateteir rail crossing crash prediction

modelsor are in the process of doing §ven the newly available statistical modeling

approacks and the availability of a relatively large dataset, the hope ih#gidatednodel

will outperform the existing NDOT Nebraska Accident Prediction Model for rail crossings.
Furthermore, recent crasheportedat urban rail crossings in Nebraska ¢atla review

of motor vehicle driver expectancy in terms of installed supplemental safety measures (e.g., 6

inch high mountable barriers along roadway centerlines to prevent passing around crossing

gates). Installation of supplemental safety measureléeonative safety measures is BRA

requirement when public agencies apply for Quiet Zone designation (crossings where trains are

not required to sound han For examplesomecrossings in Lincoln, Bbraskaare Quiet Zones,

but otherproximate crossingare notdesignated as suclihis creates a situation where drivers

may expect supplemental safety measures at all crossings and their expectations violated when

using crossings not designated as Quiet Zones. An example is the August 18, 2017 crash at S.

Folsom St. (LincolnNebraska crossing (USDOT ID: 083044D) that claimed the lives of two

high school students. Thctim in this crashattempted to pass around tbeveredcrossing

gates while an Amtrak train was on its way toward the crossing. The peesiea barrier along

the roadway centerline (a supplemental safety measure) would likely have prevented this crash.

Therefore, there may be merit in installing supplemental safety measures at select urban

crossings that are not Quiet Zones but have ergssiesignated as Quiet Zones in the general

vicinity.



1.2 Objectives

There were twoobjectivesfor this researchl)tou p d at e 19IRebraska
AccidentPredictionModel for rail crossings usintdpe latest crash and rail crossing inventory
data, an®) to develop guidelines famproving safety (via uniformity of driver expectations) at
urban rail crossings thate notdesignatedjuietzones but are irthevicinity of existingquiet
zonecrossingsHRGCs located in Lancaster County, Nebraska were catedidor the second
objective.

It was hoped tha newly developed crash prediction model that euliperform the
1999Nebraska Accident Prediction Model for rail crossings thereby allofeingnore informed
decisions regarding resource allocation ol erossings. Guidelines fanproving safety of
urban crossings that are rptietzonecrossings will enable Nebrasgablic agencies to
improve public safety and reduce possible liability from crashelR&Cs

1.3 ResearclOutline

This researclesomprisedof five tasks; the first wasmeeting with therojectTechnical
Advisory Committee (TAC) to discuss the research appraadheview ofpublishediterature
onrail crossing safetgonductedvith an emphasis otrashprediction models for rail crossings
Chapter 2 of this report presents a summary ofdgtiewedpublications pertinent to this
researchChapter 3, the methodology, provides details about the statistical techniques utilized in
thisresearchChapter4 presentsesearch efforteegarding dea acquisition and average annual
daily traffic (AADT) data update, including &4year (20082019) crash data set and the public
crossing inventory from FRANhile some AADT data ereout-of-date,the research team
providedupdatel AADT values Chapter5s presentestimatedstatistical modelsnthe expected

number oHRGC crashes per yean Nebraska. Various factors were taken into consideration



with regards to their effects on crash occurrence at rail crossings, strdssiag characteristics,
exposuraneasuredand usegetc. Chapteb provides amassessment of installed supplemental
safety measures at urban crossings in Lancaster Cthattgre not designated @sietzones.
Lastly, majorfindings fromthis researcland conclusionare presented i@hapter 7 Guidelines

on improving safety through installing supplemental safety measures at urban rail crassings

providedin Chapter 7as well



Chapter Aiterature Review

Thelatestguidanceon HRGCsincluding safetyengineeringreatmentsreavailablein
the Highway-Rail CrossingHandbook3™ Edition (OgdenandCooper,2020).Besidegproviding
generainformationon HRGCs,this handbookalsosummarizegurrentbestpracticesand
providesoptionsfor safetyenhancemenist HRGCs It providesguidanceon how existing
standardeindrecommendegracticesnaybe appliedin developingsafeandeffectivetreatments
for HRGGs.
The US Department of Transportatig®OT) Accident Prediction Model iawidely used hazard
ranking model, currently used in 19 statesH®GC hazard rankingMany stdes(e.g., Texas,
Florida) haveassessethe adequacy diRGChazard ranking models and/or deveddpew
statistical models for hazard ranking. Other states, including lllinois and Missouri, have
undertaken similar research seglbut DOT staff reported the results of the studies could not be
practically applied and therefore were not adoj&erry et al. 2017Recent models developed
for Florida and Texas utilize momsodern statistical analysis for predicting crash frequency at a
grade crossing. States such as North Carolina are moving toward an economic analysis model of
hazard ranking to incorporate the US DOT model in a more comprehensive economic analysis of

the gade crossinglable 2.1gives a summary of those mod&Bperry et al. 2017)



Table 2.1 Usage oDifferentHRGC Safety Asessmeniethods

Formula/Method Number of States | Percent of States
US DOT Accident Prediction Model 19 38%
StateSpecific Formula or Method 11 22%

None/No Formula Mentioned 11 22%

New Hampshire Hazard Index 5 10%

Multiple Formulas 2 4%

NCHRP 50 Accident Prediction Model | 1 2%
PeabodyDimmick Formula 1 2%

Total All States 50 100%

2.1 PeabodyDimmick Formula

Theearliestrail crossingcrashpredictionmodelwasthe Peabodypimmick formula,
whichwaspublishedn 1941andusedextensivelythroughthe 1950s(Peabodyand Dimmick

1941) It wasbasedn five-yearcrashdatareportedat rural crossingsn 29 states;theformulais:

(VO.ITOJ(TO.ISl)
pl).l?l

As = 1.28 % +K

(2.1)

whered is theexpectechumberof crashestarail crossingn five years,b isthe AADT, "Y
representthe averag daily throughtrains,r is a protectioncoefficient(indicatingpresencef

warningdevices)andK is anadditionalparametedeterminedrom a graph.Theformulautilized



AADT andthe numberof throughtrainsto measurerashexposureéut doesnot takeinto
accounthetemporaldistributionof roadwayandrail traffic.

2.2 New Hampshire Hazard Index

The New Hampshirdndexis givenby (Ogden2007)

HI = (V)(T)(Py) 2.2)

where( )is hazard indexpis the AADT,"Yrepresentthe average dailhroughtrains andd
represents a protection factor (indicatthgpresence of warning devices). The basic formulation
of the New Hampshire Index is based on AADT and train traffic. Several statéspil/their

own hazard index formulae by using different values)faand adding other factors, such as

train speed, highway speed, population, sight distance, number of tracks, surface condition,
alignment, presence of nearby intersections, etc.

2.3NCHRP 50 Accident Prediction Model

TheNationalCooperativeHighwayResearchiProgram(NCHRP)Report50 (Ogden

2007)reportedthe NCHRPHazardindexfor rail crossingassessmenit hasthe following form:

EA = (4)(B)(CTD) (2.3)

whereEA is expectedrashfrequencyA is vehiclesperdayfactor (providedin tabularformatas

afunctionof vehiclesperday),B is a protectionfactorindicativeof warningdevicespresenata

crossingandCTD s the currenttrainsperdayatthe crossing Accordingto Austin andCarson



(2002), no formal definition of urbanandrural areasaccompaniethe Indexandsignificantly
differentcrashpredictionswerepossibleby switchingbetweerurbanandrural values.

2.4US DOT Accident Prediction Model

TheUS DOT AccidentPredictionModel wasmorecomprehensivéhanpreviousmodels

with thefollowing form:

a= (K)(ED(DT)(MS)(MT)(HP)(HL)(HT) (2.4)

whereK is aconstantEl theexposurandexfactor,DT is thedaythroughtrains,MS the max
train speedMT thenumberof maintracks;HP the highwaypavedfactor,HL the highwaylanes
factorandHT is the highwaytypefactor.

The FRA hasdevelopedadditionaltoolsandresourceso makethe US DOT Accident
PredictionModel moreaccessibléo usersby way of its GradeDec.nteevaluationtool (US
Departmenif Transportatior2018)andthe Web AccidentPredictionSystem(Feceral Railroad
Administration2020

Besidessomeupdatesn the 1980s the modelstructureof the US DOT Accident
PredictionModel hasnot changedsubstantiallysinceits initial developmenin themid-1970s.
Thelatestversionwasdevelopedn 198 by removinga variablefor highwayfunctional
classification(Hitz 1986)

2.5 Connecticut DOT Hazard Ranking Index

This hazardndexwasfirst mentionedn the ConnecticuRailway-Highway Crossng

Program2014Annual Report(ConnecticuDepartmenbdf Transportatior2015)



_ (T+1)*(A+1)*AADT*PF

Hi 100 (2.5
where'O'® CalculatedHazardIindex, "Yis Train Movementsperday, 0 is the numberof
vehicle/traincrashesn thelast5 years, 0 & ‘Oig¥annualaverageadaily traffic and0 "@s
protectionfactor.

2.6 Florida DOT Safety Hazard Index

In 2014,FDOT updatedts hazardrankingindexwhich was developedy researcherat

FloridaStateUniversity (Niu etal. 2014) Thisis a hybrid crashpredictionmodel/Hazardndex

Logit model: t = —8.896 + 0.780 = Risk + 0.020 * MTS

+0.014 * HWSPD + 1.023 = Track

+ 0.965 x Lane — 0.540 * Flash (2 6)

Predictionmodel P = exp(t) /[1 + exp(t)] 2.7)
Adjustmentfor Acc. Histor pr=p |2

: Y P (2.8)

Safetylndex =90+ (1 - }M’;xp) 5% (logyo(B+1))*F 29

whereY Qi '@ ¢ W ©O08 6 QTYi wikayearlyaverageof thenumberof trainsperday,
o 6 ‘Oisvannualaveragdaaily traffic, 0 "Y'7¥ maximumtimetablespeed:Ow "YU i©posted
vehiclespeedimit, "Yi & @& 600 "@Ei O O VBNIO 1 ¢ G &isthe numberof
highwaylanes,”Oa ‘@& dummyvariablefor the presencef flashinglights, ®is predictedthe
numbe of crashegperyearat crossingadjustedor history, Ois the numberof crashest

crossing duringhistoryperiod,0 is the numberof yearsof crashhistoryperiod,) is safetyindex

9



value,l & wid themaximumvalueof incidentprediction,d is thenumberof schoolbusesat
crossingandOis a variablefor warningdevices.

2.7 Missouri DOT Exposure Index

This indexwasdevelopedn 2003(Qureshietal. 2003)

PassiveCrossings: EI =TI+ SDO(TD) (2.10)

Active Crossings: El=TI (2.11)
g

__ (vM*VS)[(FM*FS)+(PM*PS)+(SM+10]
where4 s traffic index, 10000 , SDOis sightdistanceobstruction

__ Required sight distance—Actual sight distance

factor,” Requuired sight distance , @ U is annualaveragedaily traffic, w "% vehicle

speed;00 is daily freight train movementst a crossing,O™¥ freight train speedp 0 is daily
passengeirain movementstacrossingd "¥ passengetrainsspeedand”Y 0is daily switching
movementst a crossing.

2.8 North Carolina DOT Investigative Index

Thisindexwasdescribedn the North CarolinaRailway-Highway CrossingProgram
2014AnnualReport(North CarolinaDepartmenbdf Transportatior2015) Thisindexwas

initially developedn the1970sandupdatedn the 1980s

__ PF+*ADT*TVATSF*TF
160

TI

n (70 . 3‘)2 + SDF 212

whered "@s protectionfactor,d ‘O ¥ averagedaily traffic, "Yais daily train volume, Y Y1Strain

speedactor &), "Y @ trackfactor,0 is numberof crashe overhistory

10



period,®is numberof yearsin crashhistory,and"Y'O 'i®the sightdistanceactor= ——2

pPo

2.9Texas DOT Priority Index

A

Thisindexwasfirst developedn 2013(Weissmanretal. 2013)andrevisedin 2015.1 t 6 s

a statespecifichybrid crashpredictionmode] givenby:

L = exp [—6.9240 + PF + (0.2587 * HwyPaved) — (0.3722 =
UrbanRural) + (0.0706 = Traf Lane) + (0.0656 * TotalTrack) +
(0.0022 * ActualSD) + (0.0143 * MaxSpd) + (0.0126 * MinSpd) +
(1.0024 * log,(TotalTrn + 0.5)) + (0.4653 * log,, (AADT) ) —

(0.2160 * NearbyInt) + (0.0092 * SpdLmt)] (2.13)

wherey is the predicted number of crashes per y@4dt,is protection fator, 00 @0 O iB'QQ
dummy variableUrbanRuralis dummy variableTrafLaneis thenumber of roadway lanes,
TotalTrackis thetotal number of tracks atcrossingActuallSDis actual stopping sight distance
for approachMaxSpds maximum typical train sgels,MinSod is minimum typical train speeds
for switching,TotalTrnis total daily trainsAADT is annual average daily traffislearbylintis
dummy variablgepresenting nearby intersections, &pdiLmts roadway speed limit on
approach.

2.10FRAb Blew Modelfor HRGC Accident Prediction and Severity

The FRA published an update to its accident prediction m8deti@nd Gillen, 2020) to
support grade crossing management by enabling more accurate risk ranking of HRGCs, more

rational allocation of resources fpublic safety improvements and the ability to assess the

11



statistical significance of variances in the measured risk. Thikelnsdbased othe zereinflated

negative binomial (ZINB) regressi@iong with the Epirical Bayes (EB) methathat accounts
for crashhistory while correctingfoi r e gr e s s i on tAonultinbreal logista n 0 bi as.
(MNL) regression was utilized for the crash severity component having fatal, injury, and
property damage only as the crash outcomes. The&Ziie® regressiormodel has té following

equatios (Brod and Gillen, 2020); the ZINB count model is given by:

NCountPredicted
— e[ﬁo +B11Expo+ f5:Dy+F3-D3+ B4 RurUrb+ B -XSurfID2s+f-1Aadt+ B, 1MaxTtSpd]

The ZINB zereinflated model is given by:

A

14z
[¥a+¥:1TotalTrains]

PmﬂatedZero =

Z=¢€

The ZINB combined model is given by:

Npredicted = Ncountpredicted (1 G PInftatedZero)

Where

12



NCoumntPredicted

PmflatedZero
NPredicted
IExpo!
D2

D3

BurUrb
XSurfID2s

IMaxTtSpd!
1Aadt!
ITotal Trains!

Predicted accidents of count model (data for left-hand side of regression are
counts of accidents at crossings in 5-year period 2014-2018)

The probability that the grade crossing is an “excess zero”

Predicted accidents after accounting for excess zeroes

Exposure, equal to average annual daily traffic times daily trains

If warming device type 1s lights =1, 0 otherwise

If warning device type is gates =1, 0 otherwise

(note: if both Dy and D3 are zero, then warning device type is passive)
If Rural = 0, if Urban =1

Timber = 1, Asphalt = 2, Asphalt and Timber OR Concrete OR. Rubber = 3,
Concrete and Rubber =4

Maximum timetable speed (integer value between 0 and 99)
Average annual daily traffic

Total number of daily trains

'These variables have been transformed as follows: Ix = log(1+ax). where x is the original
variable and a 1s a factor. The factor a was selected so that for the median value of x, In(1+ax) =

In(x)

The estimated coefficients are as follows (Table 4.1 in Brod and Gillen):2020

ZINB regression count model coefficients (negative binomial with log link)

Variable Estimate Std. Error Z value Pr(=|z|) Significance
(p-value) Code
(Intercept) -8.35922 0.32079 -26.059 < 2e-16 ok
IExpo 0.19023 0.02866 6.638 3.18e-11 ok
D2 -0.28478 0.04806 -5.926 3.10e-09 ok
D3 -0.85770 0.04089 -20.976 < 2e-16 ok
RurUrb 0.39346 0.03162 12.444 < 2e-16 ok
XSurfacelD2s 0.13182 0.01715 7.686 1.52¢-14 ok
IMaxTtSpd 0.68760 0.68760 22.702 < 2e-16 ok
1Aadt 0.10626 0.10626 3.511 0.000446 Hokd
Log(theta) -0.25934 .08867 -2.925 .003447 ok

ZINB regression zero-inflation coefficients (binomial with logit link)

Variable Estimate Std. Error z-value Pr(>|z|) Significance
(p-value) Code

(Intercept) 1.17084 0.19001 6.162 7.19e-10 HkE

ITotalTr -1.01088 0.08452 -11.961 < 2e-16 ok

Significance codes: 0'**# 0.001 *#* 0.01 " 0.05''0.1"''1
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The MNL crash severity model utilized grade crossing characteristics and modeled the
probabilities of fatal, injury, and property damagdy crashesk-atal crashes were selected as
the reference category and the MNL estimated the probabilities othler two categories
relative to the reference category. The crash severity model equations were as follows.

Injury crash (relative to fatal crash):

P(acctype = injury | A
P(acctype = fatal | A

P20 + P21 IMaxTtSpd + B,; - 1Trains + f,3 - RuralUrban + 54D,

Property damage crash (relative to fatal crash):

P(acctype = PDO | A B
P(acctype = fatal |A)

B30 + P31 *IMaxTtspd + 5, *1Trains + f33 - RuralUrban + f34:D,

Where:

P(acetype = fatal | A) The probability of a fatal accident given an accident A
P(acetype =injury | A}  The probability of an injury aceident given an accident A

P(acctype =PDO | A}  The probability of a PDO accident given an accident A

IMaxTtSpd Natural log of the maximum (rail) timetable speed at the crossing
ITrains Natural log of the total number of daily trains at the crossing
RuralUrban 1 if crossing is in a rural (non-urban) environment. 0 if in urban
D2 Has value 1 if warning device type is lights. 0 otherwise

The estimated coefficients were adduls (Table 4.1 irBrod and Gillen, 2020).
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Regression Output — Accident Severity

Part A — For a given accident, probability of an injury accident (relative to a fatal accident)

Variable Estimate Std. Error z-value Pr(jz))=0
Intercept 5.248627 0.355109 14.78032 0
IMaxTtSpd -0.92544 0.097943 -9.44876 0
|Trains -0.28326 0.042458 -6.6716 2.53e-11
RuralUrban -0.27408 0.072886 -3.76042 0.00017
D2 0.489354 0.141041 3.469598 0.000521
Part B — For a given accident, probability of a PDO accident (relative to a fatal accident)
Variable Estimate Std. Error z-value Pr(|z))=0
Intercept 6.957135 0.339015 20.52161 0
IMaxTtSpd -1.23128 0.092907 -13.2528 0
1Trains -0.22114 0.039411 -5.61125 2.01e-08
RuralUrban -0.24085 0.067191 -3.58462 0.000338
D2 0.330487 0.135769 2.434192 0.014925

Forecasts for injury severity can then be obtainedsing thestandard equations for

multinomial models.
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Chapter ModelingBackground
This chapter presenbsckground information on two types of models that aregbeat
for count data such as yearly crashes at HR®Gisson and the Zero Inflated Poisson/Negative
Binomial model.

3.1 Poisson Regression Model

The nature of crash frequency is Aoggative integers or count datadthe widely
adopted approach has bebaPoisson regression model (Miaou and Lum, 1993). Poisson model
is a parametric model in which the crash occurrenf#lows a Poisson distribution, which can

be described mathematically:

CO0EQIiTB8E (3.
Where' is the model parameter. So, the probability of varialleking integer values 1, 2,63

can be represented

LW W A (3.2
o LOL (3.3

Where the mea® @ and varianc® @  are equal. fius the probability of zerds:
06 T Q (3.9

As the Poisson model became the basis of many studies, its variants also gained
popularity due to the limitati@of simple Poisson models. For example, the Negative

Binomial/PoissorlGamma model can handle oxdispersion which occurs when mean of
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response variable is much higher than the variance while it violates the basic Poisson model
assumptionsiilton and Mannering1998).In a negative binomial distribution with parameters

and| , the mathematical form is as follows:

DO W T  — (35)
oo m p | ¢ (3.6)

oh (37)

bow “p | (3.8)

Where a quadratic function of the mean|for 1, equvalent to the Poisson variance if 1L

Furthermore, Lord and Mannering (Lord and Manner2@4,0 pointed out a variety of
potential data and methodological issues in crash frequency analyses that have been identified in
existing literature, includingver-dispersionunderdispersionunobservedemporal and spatial
correlation, low samptenean and small sample sipeashtype correlatiopfixed parameters
etc. These issues could lead to erroneously specifying analytical models and hence misleading
inferences if not addressed properly.

3.2 Zercinflated Model

Another set of models is zemoflated Poisson and negative binomial models, designed to
deal with a significant proportions afesponse variabkakingzerovaluesor morezerosthan
one would expet in conventional count data scenario. The formulas forindéiated Poisson

model is as follows, including a parameéter
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DWW T p “Q (3.9)
o0& p (3.10)
0 W p “"p " (311

On the other hand zercinflated negative binomial motles formulated as follows:

od m “ p “p | (3.12)
o® p *° (3.13)
0 QO p “"p " (314

Where if| Ttithe model is equal to a zenuflated Poisson model.

This model was used to model crash frequency. As the crash frequenaptsiata
(nonnegative integer), and crash occurrence at HRGC is a relatively rare event, the data is
considered exhibiting ovatispersion and excess zero. The zefated Poisson (ZIP) Model
assumes that data distribution is a combination of Poigstibdtion and logit distribution,
which fits the circumstance of this resear€igure3.1.1 simulates 500 samples that follow a

zerainflated Poisson distribution.
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Figure 3.1 Simulated Zerenflated Poisson Distribution

As can be seen frothis figure the distribution is a skewed Poisson distribution with
large amount of data equal to zero. Therefore, to describe the distribution, the ZIP model
contains two partsa Poisson model, which is responsible for predictingmegative value, and

a logit model for predicting excess zeros. The ZIP model can be expressed as:

Py;=0) =p; + (1 —p;) x e ¥ (3.15)
Yi

P(y; =m, form > 0) = (1 py) + Lo (3.16)

Pi= (3.17)

log(ug) = XB (319
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, _ pi
logit(p;) = log (1—_m) (3.19

where pi is the logistic link function defined by equati8i{),‘ is the Poisson component
defined by equation (8). As can be seen, the ZIP model splits the possibility of response values
into two scenarios: equation. {3 describes the scenario when the count is equal to zero, while
eqguation () generates cau values by a Poisson model when the count is not zero.

The coefficients can be estimated by solving its maximum likelihood function. The

likelihood function can be expressed as:

L= Yforiify—olog(; +e™)
+ Zfﬂ'r iif yp()[yilog(iui) — u; — log(m!)]

—2ilog(1 +4;) (3.20)

Because it is often observed in crash data that many locations have no occurrence of
crash, by splitting roadway segments into csisk and crasiprone categories, zeioflated
models have bednequentlyconsidered in research (Shankar eti97; Lee and Mannering,
2002; Lord et al., 2007). Critics have argued that the draststate has a lontgrm mean equal
to zero, this model cannot properly reflect the crdata generating proce@dalyshkinaand
Mannering 2010). Similarly, variousther count data models were considered over the years
including the Gamma model, the negative binorhiatlley model, ConwayMaxwell-Poisson

model, and so on.
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Chapter 4DataCollection

This chaptermprovides detailed informatiomdhe data utilized throughoutis researb
study Safety data regarding rail crossings from multiple sounegecollected and integrated
for analysis, including HRGC inventory database eraghhistory data extracted from
publically-availableFRA dataRailroad Inventory Manageme8iystem (RIMSpbtained from
NDOT, Lancaster roadway inventory database and land use data obtained from City of Lincoln
NebraskaA significant numbeof database&ariablesvere manually inspected and verified
during field visits such as roadway speed tjrpavement type, land use, .etc

4.1 FRA HRGC InventoryDatabase

According to he FederalAid Policy Guide (FAPG 924.9(a) (1)pach statshould
mai ntain fia process for coréashtmffid,anchg and mai nt a
highway data, including, faailroadhighway grade crossings, the characteristics of both
hi ghway an dU.8 Depariment af Brdndportatiot®91) National HighwayRalil
Crossing Inventory Reporting Requiremealsostatesthati i n or der for the Cro
to seve as an effective database, States and railroads need to exchange information with each
other and promptly update the crossthgt a r ec or d s .Bhas, KRA coltegideosmn o c c ur |
each state and maintains a database on HR@@seentireUS.

Updaes to HRGGOnventory datare usuallyprovided by the local coordinators and
submitted using FRApproved forms. These forms have specifications for different field names
andvalue assignments. Authorized users must submit new values for specific fiedd nam
accordingly. The field names, filed description and values used in this study are attached in
Appendix A which conformed tthe FRA HRGCinventory databas®ecause reportingpdates

for the inventory database does not necessarily require verifi¢éediorother agencies, data for
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some field may not be updated regularly, such as AADT and traiffic volumes. This could
lead to outdated or erroneous data, which could atfashpredictiors by models based on the
databaseAccuracy issues in the FR#&ossing inventory database raise concerns for states and
railroad companies. In additioRRA provides geospatial resources to the public on ralil
networks, including data dARGCs, Amtrak stationsgtc. Spatial information of a given
crossing is denotedybatitude and longituden the database

Various fields are useful when integrating crossing inventory datecvatindata, such
as crossing ID, state, county, nearest city name, etc. The inventory database also provides details
for the traintraffic traversinga crossing: total daylight thru trains, total night time thru trains,
total transit trains, number of main tracks, numifesiding trackspnumber of yard tracks,
number of transit tracks, average passenger train peumtay, etcVariables withregards to
safety measures include presence of signs/signals, number of crossbuck assemblies, number of
stop signs, number of yield signs, number of bells, flashing lights, channelization
devices/medians, gate configuoatj etc. The FRA inventory dditase also provides information
on thecrossinghighway, such as number of traffic lanes crossing rail track, pavement type,
highway functional classification, street or road name, posted highway speed limit, etc.

4.2 FRA HRGCCrashDatabase

Title 49 Code of Fedal Regulation§CFR) Part 228US GPO, 200prequires eporting
of railroadrelatedcrashes to the FRApecifically,FRA ha made efforts to build several
databases to gather informatiom evaluating rdioad safety, including: train crastatabase,
trespassecrashdatabase, rail equipmecitashdatabase, highway rail crossiogshdatabase,
railroad casualty database, etc. FRA uses the repadstidata to summarizayearly report on

crasheghat involve the impact of a train with a roadway udes.drashis involved with railroad
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signal failure or grade crossing failure, railroad companies are required to provide more details
along with thecrashreport form. Furthermore, FRA requires various forms with regards to
different scenarios, such Berm FRA F 6180.55 for injury and illness and Form FRA F 6180.57
for Highway-Rail Accident/Incident, etc.

The fields available in therashdatabase consist of a series of categories, suatasis
information, crossing information, train information, enwineental factors, highway
characteristicsetc. For instance, trerashinformation includstime ofcrash AM or PM, injury
severity outcome, number of injuries or fatalities of roadway users, number of injuries or
fatalities of railroad employees, numlagrinjuries or fatalities of train passengers, etc.
Environmental factorat the time of crasbonsist of temperature, weather conditions, lighting
conditions, etc. Train information inclusleumber of cars, number of locomotivege of train,
train sped, etc Additionally, other important factors such as release of hazardous materials are
also includedTextual descriptionsf crashesan also be provided the reporting form
Appendix Bprovidesthe FRAHRGC crasidatabase fields.

4.3Field Validation ofthe FRA HRGataase

As part ofLancaster CountiARGC consistency analysis, the research tealidated the
information contained in the FRARGCinventorydatabase with HRGCs in the fielHRGCs
were taken into consideration if they were publiegi@ie, and operational. The research team
visited public rail crossings in Lancaster County aedanpared field conditions with those of the
databasegorrections were made to any erroneous records in the database aswisdirzg
valuesadded when availabla the field Thisinventory validatioreffort was then extended
Cass, Douglas, Gage, Jefferson, Otoe, Saline, Sarpy and Saunders cbuatsetection of

theseadditional eightounties was based oailroad network considerations, urban/rural natur
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of acounty,proximity tothe University of Nebraskhincoln, andavailability of funds in the
project

Figure 4.1 illustrates the HRGilltration processand theFRA HRGC inventorydatabase
variables usetbr Lancaster County. A similar procemsd thesame variables were uskxt
HRGCfiltration in other countiesFigure 4.2 graphically illustrates the results of HRGC
filtration process for Lancaster County. For thisicty, there were 565 rail crossingstie FRA
HRGCdatabasehowever, exclusion girivate, elevatefgradeseparated)and closed HRGCs
resulted irthe selection 0112 HRGCsField visits to thesdectedHRGCs revealed that seven
HRGCs were either missing or relocatbdrebyresulting in 105 Lancaster County HRGi@iat

were fieldverified.

Lancaster County Crossing Selection

Research object: Public| |HRGCs|that are|not closed|in[Lancaster coun
) ty|

Filter in FRA database: | Xing Type || Xing Position || ReasonID | | State, County |

| Select: Public | | Select: At grade | State = NE
County = Lancaster

Remove: Closed;
No train traffic

Figure 4.1 HRGCFiltration Process fot.ancaster County
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Total HRGCs in
Lancaster County:

Total public
HRGC=:418

Errors: 7

crossings: 495

Figure 4.2 Results oHRGCFiltration Process fotancaster County

For eacHield-visited HRGC, a total of 58latabaseariables wereheckedand digital
picturesof the HRGCobtained. Ay incorrect values in the database were corrected per field
conditions as well as missing values addée@nthey wereavailable in the fieldTable 4.1
presats a summary of the corrections and missing value additions for the nine Nebraska
countiesfrom field visits In aggregate539 HRGCs weréeld-investigated and 2(5.0%)were
found to be either abandon@tbnoperationg), private (listed as public imé database) or
altogethemon-exigent This effort resulted 2,241 values to be correctadd1,732 missing
values to be addeaglving anaverageof 7.4% of thedatabas@aluesthat werechangedat each

HRGC.
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Table 4.1 Summary of Corrections and Added Missing Valfresn Field Validation

County | Number of| Number of |HRGCs Visitgdbandoned/Non-| Percent Corrected
Corrected |Missing Value: existent/Private | and Added Missing
Values Added HRGCs Values
Lancaster 376 657 112 7 9.2
Cass 307 83 55 2 7.1
Douglas 286 108 67 3 5.9
Gage 115 347 41 4 11.3
Jefferson 174 25 46 2 4.3
Otoe 285 46 79 4 4.2
Saline 119 37 38 0 4.1
Sarpy 144 59 25 2 8.1
Saunders 435 370 76 3 10.6
Total 2241 1732 539 27 7.4
During the spring 2020COVHR 9 s hut down, the research

PathWeb system to validate the FRA HRGC databdss.photebased system is focused

state highways and therefore, HRGCs located only on the state highways could be checked.

e a

Table 4.2 presents a summary of the corrections and missing value additions using the PathWeb

system. This effort identified 6 (2.9%) HRGCs that were either abaaddpnivate, or altogether

nonexistent. Theumberof corrected values was 670 while 109 missing values were added to

the database for an average of 3.8% of the database values changed at each HRGC.

Table42Summary of Corrections and Added Mi
State Highway | Number of | Number of HRGCs |Abandoned/Non-| Percent Corrected
system Corrected [Missing Valuey Inspected |existent/Private | and Added Missing
Values Added Values
PathWeb 2019 670 109 203 6 3.8
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Database ariables that frequentlgontainedncorrect information includi thenumber
of crossbucks, number of yield signs or stop signs, number of advance warningreiggsce
of channelization devices, crossing surface type, approach surface type and highway speed limit
Figure 43 presents an example of the inconsistency between the FRA HRGC inventory database
and field conditions atrossing 064112k terms ofpresewe of yield sign, pavement type,
approach surface type and pavement marligure4.4 shows an example of a crossing

(crossing 1D083524R that was abandoned hatstill in the FRAHRGC inventory database

Longitude YIELD Signs (R1.
40.3210026  -96.8373631
40.3210026 -96.8373631

Crossing Numl Latitude Longitude
Crossing Num[l.atitude LAongitudrei Is Roadway/Pz| 0641128 40.321062; -96.83736"
0641128 40.3210026  -96.8373 0641128 40.3210026  -96.8373631 ¢
0641128 40.3210026  -96.8373631) NARATI2H AN 2124946 QR 2242001

Crossing Numi Latitude Longitude Pavement Mai
0641128 40.3210026  -96.8373631 | {No Marki
40.3210026  -96.8373631|

Figure 4.3 Data Correction Example, Crossing 064112B
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Current Crossing: 072952F

Figure 4.4 An Exampleof an Abandonedrossing(083524F

The numbes of corrected or addemtissingvalues forvariousvariables were recorded
for each county.For instancefigure 45 shows the numbeof corrected or added valuew f
different inventory variablem Gage County. The variablesth high incorrect values were
HwynrSig (doesnearbyhighwayintersectiorhavetraffic signalg, Bkl_FlashPst (mastmounted

flashinglights: backlights), andSd_FlashPos{mastmountedflashinglights: sidelights).
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Gage County
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Figure 4.5 Corrected or Added Values of Each Variable for Gage County

In summary, the combed effort of field visits and use of the PathWeb system resulted in
inventory verification of 742 HRGCs in Nebraska; in total 2,911 values were corrected and 1,841
missing values were added to the HRGC inventory database while 33 HRGCs were identified
tha were either abandoned, private listed as public or altogethesxistent. A Excel file
containing the original and corrected/added values #@i$aatabas€including the HRGC
digital picturesjusingE SR1 6 s shftwardherpcreated for handoveo NDOT (fig. 4.6).

In addition, the Lancaster Roadway Inventory Database and land use data from City of Lincoln
supplemented the GIS as showtigure 4.7.This was then used for the HRGC consistency
analysis.

According to the FRA HRGC inventory datababere are 2,863 public,-gtade,
operational crossings in Nebrask¥ith 742 HRGCs validated via a combination of field visits
and NDOTO6s Pazl1RIWRGCsseyemdinen meed ofinventory information

validation.
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Figure 4.7 Road inventory and land use data
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4.4 Database for Updated Crash Prediction Model

The corrected crossing inventory databescords were appended to the HRGC crash
database by using the unique crossingdizalable in the two databases to create a combined
database for crash prediction modelifibe FRA HRGCcrashdatdase containedrashhistory
data from 2008 to 2®lon Neébraska HRGCg~or model estimationhe yearly number of
reportedcrashes for eaddRGCwas considered an observation. Using this framew®%, 3
observations werassociated witlerastes Of thesg 224 (57.0%)observations were crashes with
no injuries, 12 (31.6%)observations with injurieand 45 (11.4%) observations involvidal
crashes. Modgdarameteestimation was based on 202818 crash plus inventory data while
the 2019 crash plus inventory data were usethismodel prediction validatio@hapter 5
provides details of the modelirgforts

4.5 Descriptive Statistics

After integrating data from various sources, descriptive statistics of the variables used
through the model estiation and evaluation process are preseiete that for each crosgn
there is one observation for each y&agure 4.8 showa histogram plotdemonstrang the
distribution of the studied highway rail grade crossingadttyrallogarithmc values of AADT.
It can be observed that the maximum and minimum values for AAB&raund 50,000 vehicles
per day an@nevehicle per day, respectively. The average AADT for all considered crossings is

approximately672vehicles per day.
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Histgram of AADT (natural logarithm)
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Figure 4.8 Histogram of Highway Rail Grade Crosgs by AADT faturallogarithm)

Figure 4.9 shows histogram plot demonstiag the distribution of the studied highway
rail grade crossings by the number of through trains (including day and night). It can be observed
that the maximum and minimum values the number of through trains are 118 aetbtrains
per day, respectively. The average value for all considered crossings is approximaiely 16.

trains per day.
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Histgram of Train Volume
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Figure 4.9 Histogram of Highway Rail Gdde Crossings bfumber of Through Trains

Figure 4.10 shows the distribution of the studied highway rail grade crossings by

highway classification (urban or rural). It can be observedX&¥o of the roadways (a total of

2,192 crossingsexcluding missig valuey at HRGCs were classified as rural.
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HRGC Highway Classification
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Figure 4.10 Distribution of Highway Rail Grade Crossings by Highway Classification

According to FRAOGs c | a slslasdification,tradwags canfoe hi g h w
categorized as six leveli) interstate; (2) other freeway and expressway; (3) other principal
arterial; (4) minor arterial; (5) collector; and (6) local roadwsgure 4.11 showshe
distribution of theHRGCsby highway functioal classifcation. It can be observed tHg693
roadways were classified as local road&%% of all the roadways)n addition, there were3b
minor collector roadway£69major collector roadwayg,3 minor arterial roadway4,3 other

principal arterial roadwayand 1 other freeways and expressway.
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Roadway Function Classification
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Figure 4.11 Distribution of Highway Rail Grade Crossings by Highway Function Classification
Figure 4.12 presents the distribution of HIRGCsby highwaylanes As shavn in the
figure, the minimum number of traffic lanes at the HR®@s one lane, while the maximum

value is eight lanes. The distribution indicates the majority of the roadways at HR&R®s)(

consisted ofwo traffic lanes.
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Roadway Traffic Lanes
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Figure 4.12 Distribution of Highway Rail Grade Crossings by Number of Traffic Lanes

In terms ofthe dependent variable, crasbduency at HRGCs, based on tiash history
data on a yearly basis, oniyé HRGCswere associated wittwo crashesvhile 3388 HRGCshad
only onecrashand the rest of the dataset had z@asheslt can be observed that the majority of
observations99.0%) did not involve arash Thedisproportionatalistribution of zero values

warrants the investigatiaof azerainflated modehs discusseth Chapter 3
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Chapter BHRGC Crash Prediction Model Estimation

This chapter covers the first rel898arch obj
Nebraska AcciderredictionModel for rail crossings using the latest crash railccrossing
inventory data. Ipresents thestimation of th020NebraskaHRGC CrashPredictionModel
based orthe dataset created for model estimatraiudingthe model estimatioprocessand the
different variants that were explored.

The 1999Nebraska Accident Prediction Model for rail crossifg®NTB, 1999)was
based on &eardata This researclhtilized 11-year (20082018) crash andHRGCinventory data
for the 2020 Nebraska HRGC Crash Predictioodl estimation and 2@®.crashand HRGC
inventay data forvalidation of themodelpredictions The 1tyear dataetis also referred to as
training data in this reporthe model estimation proceasnedto investigatestatistical
associations of various factors (e.g., crossing characteristics, exposasuresand use, etc.)
with crashes atRGCs In this chapteryarious statisticanodeling techniques (e.g., Poisson or
Negative Binomialareexploral and evaluated based characteristicef thedataand statistical
tests Thecorrespondingesuls present set of models (equations) for #vepectechumberof
crashes per year at Nebraska publRGCs Note that the data utilizedr model estimation
includedHRGC correctednventorydataresulting from field visits and use of the NDOT
PathWeb systmas described previolysin this report.

The estimatednodelequationsverevalidated bypredicting crashes for 20-and
comparing those results witheactual crashes reported in 20Additionally, results of the
model equations we comparedo thoseobtainedirom the 1999Nebraska Acciderferediction
Model as well as theewFRA Accident Prediction ModdBrod and Gillen2020)when applied

to Nebraska dat&onsequentlythe2020 Nebraska HRGC Crash Predictiondé|
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outperformed th&999Nebraska Acident Prediction Modednd thenew FRA Accident
Prediction Model

5.1 Analysis of Accident Prediction ModeBased orVariousCriteria

This section presents the estimation results of candidaséprediction models with
descriptions of the model selectiprocedureThe HRGC crashdatafor 2019 were used to
assessapdness of fit of the candidateashmodels based on various performance metrics.
Specifically, thanodel selectiomriteriaincluded mean of squared er(MSE) and root mean of
squared erroRMSE), logarithm score, Akaike information criteria (AIC) and fre¥cent
differencein 2019 craslpredictiors.

Therewerea fewmodelsthat could be appropriate for modeling the HRGC crash data
Conventional Poisson regressiammdNegative Binomial regssion(to address ovedispersiof),
Zeroinflated Poisson/Negative Binomial modéis account for excess zetoashes) and
Poisson/Negative Binomial models with mixed effects, assunmongpality and homogeneity of
variance of residual$or eachmodel franework, variable selectionas performed based on the
results of AIC, logarithm scondf or war d sel ecti on. Wwasalsoddi ti on,
considered as an important benchmarfkich was based ae variables used in the existing
NDOT Accident Préiction Model(HNTB, 1999) To determine the best performing model,
several procedures were conductadh as ovedispersion test, model selection, variable
selection, etcand theresults are as follows.
5.1.10verdispersiontest

A standard Poissaegressiomodeb the conditional mea® &  *, which is assumed
equal to the varianaaf thedependentésponse variable. The ovéispersion teshssesses the

hypothesis that this assumption holds against the alternative that the variance is of:the form
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Where a quadratic function of the mean|for 1, equivalent to the Poisson variance if Tt
Overdispersion corresponds|to 1tand underdispersion to Tt The coefficient can be
tested with the correspondiagtatistic which is asymptically standard normal under the null
hypothesisByY building a Poisson model on theodel estimatiomlataset the overdispersion
test yields a fvalue of 0.24 whiclindicated a lack o$ignificant evidencef overdispersioror
underdispersionlt can also be validated by exanmig the mean and variance of the response
variable. Theyearlymeancrashfrequency of the training datatwas 0.0098(crashesyvhile the
variancewas 0.0010 (crashe$§. Thus, estimating Poisson modekas viable for this datset and
there iswasnoneed for estimating Negative Binomial models.
5.1.2Candidatemodel performance

The USDOT formula has an initial model and two variants (referred to as weighted and

normalized). The initial model can be estimated using the folloedution:

@ 0 20"Q YOO Poud OO DOH
Where:
Wis theinitial crashprediction outcome;
0 is the constant;
'O "8 the factor for exposure index based on the product of highway and train traffic;
0 "Yndicates the factor for the number of main tracks
O "nhdicates the factor for the number of through trains per day during daylight;

"Ovindicates the factor for highway pavement status;
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0 "Yndicates the factor for maximum timetable speed;
"O"Yndicates the factor for highway type;

0 "Yndicates e factor for the number of highway lanes;

This initial model hatwo variants, based ohé values of the highwangil grade
crossing characteristic factasach adraffic control devicesnstalled at a given highwarnail
grade crossinga) passive; (pflashing lights; and (c) gates.

For instance, t he sedonckrasiprediciohie formmdateeéds o r

follows:

Where:
Wis the initialcrashprediction outcome;
0 is the secondrashprediction outcome;

0 is the number ofrashe occurred iriYyears;

“Yis a weighting factor that equalg—;

Theinor mal i zedo mo d e hormtabzimgthkmnstndwhiohustha t e d
sum of thepredictedcrashesnultiplied by the corresponding normalizing constant equal to the
number ofcrasheswhich occurred in a recent periothe normalizing procedure different
depending on the installed control devicesath highwayrail grade crossings separately
Similarly, the 1999NDOT Accident Predictiomodel(HNTB, 1999)hasfi we i ght ed o

Afinor mali zedo formul as as wel |
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Table 5.1 presentdé¢performances dlifferentcandidatecrash predictiomodels
Evaluation metrics such as AIC, MSE, logarithm score and prediction outtermeported for

comparison.
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Table 5.1 Performance o€andidate Nebraska Crash PreidictModels

Percentage
difference in
Logarithm | Predicted
Candidate models AIC MSE RMSE prediction
score outcome
resultsfor
2019
All variables 2408.142| 0.008132886| 0.090182515| 0.05391566| 21.078 -15.69%
Small 2452.267| 0.008001879| 0.089453222 0.0583638 | 21.262 -14.95%
Selected variables based on Al(] 2422.401| 0.008027479 0.0895962 | 0.05217232| 21.078 -15.68%
Selected variables based on LR
2418.829| 0.008021923| 0.089565189 0.05388908| 21.079 -15.68%
Poisson test
Selected variables based on
2434.824| 0.008712828| 0.09334253| 0.04775778| 26.156 +4.62%
stepwiseselectin
Mixed effects all variables 2407.311| 0.008138168 0.090211795 0.05409535| 21.077 -15.69%
Mixed effects small 2442 .536| 0.007960817| 0.089223411| 0.05557907| 21.262 -14.95%
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Mixed effects all variatds based

2421.009| 0.008036451| 0.089646255 0.05273017| 21.079 -15.68%
on AIC
Mixed effects all variables basec
2411.967| 0.008080538 0.089891813 0.05287434| 21.078 -15.69%
on LR test
All variables 2382.547| 0.008289844| 0.09104858| 0.04594305 | 21.086 -15.65%
Small 2437.525| 0.00802454 | 0.089579797| 0.09737134| 21.266 -14.93%
Selected variables based on Al(] 2393.524| 0.008146457| 0.090257725| 0.1037519 | 21.080 -15.68%
Zero
Selected variables based on
inflated 3246.723| 0.008712828 0.0933433 0.0759834 | 28.082 +12.33%
stepwise selection
Poisson
Mixed effects small 2408.802| 0.008115772| 0.09008758| 0.06357789| 14.731 -41.07%
Mixed effects all variables basec
2399.02 | 0.008027471| 0.089596155, 0.07578753| 14.439 -42.24%

on LR test
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